

Mendeleev Commun., 2006, 16(2), 112-113

Mendeleev Communications

Degenerate rearrangements of long-lived 9,10-dimethyl-9-(1-methyl-1-vinyl)phenanthrenium and 9,10-dimethyl-9-(trans-1-methyl-1-propenyl)phenanthrenium ions: unexpected strong retardation of vinyl migrations

Vitaly G. Artamoshkin, a.b Vladimir A. Bushmelev, a Alexander M. Genaev*a and Vyacheslav G. Shubina

^a N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. Fax: +7 383 330 9752; e-mail: genaev@nioch.nsc.ru

DOI: 10.1070/MC2006v016n02ABEH002209

As found by dynamic NMR, the rates of degenerate rearrangements of long-lived 9,10-dimethyl-9-(1-methyl-1-vinyl)phenanthrenium and 9,10-dimethyl-9-(trans-1-methyl-1-propenyl)phenanthrenium ions proceeding by 1,2-vinyl shifts are unexpectedly much lower than those of the 9,10-dimethyl-9-vinylphenanthrenium and 9,10-dimethyl-9-(cis-1-methyl-1-propenyl)phenanthrenium ions.

Long-lived 9-vinyl-substituted 9,10-dimethylphenanthrenium cations capable of degenerate rearrangement by 1,2-vinyl shifts (Scheme 1) are suitable for determining the migration ability of vinyl and substituted vinyl groups.^{1,2} The migration ability of unsubstituted vinyl and *cis*-1-methyl-1-propenyl groups (ions **1a,c**) is the highest among hydrocarbon migrants, *cf.* refs. 3, 4.

We studied the kinetics of degenerate rearrangements of 9,10-dimethyl-9-(1-methyl-1-vinyl)- and 9,10-dimethyl-9-(trans-1-methyl-1-propenyl)phenanthrenium ions (1b and 1d, respec-

tively) proceeding by 1,2-shifts of vinyl groups by dynamic NMR. Cations 1b and 1d were generated under long-life conditions by the ionization of carbinols 2b,d† in FSO₃H–SO₂ClF– CD₂Cl₂ at -130 °C (Scheme 2). Their structures were confirmed by ¹H and ¹³C NMR spectroscopy.[‡]

b Novosibirsk State Pedagogical University, 630126 Novosibirsk, Russian Federation

[†] Satisfactory NMR, IR and MS data were obtained for compounds 2b,d prepared from 10,10-dimethyl-9-oxo-9,10-dihydrophenanthrene⁵ and CH(R)=C(Me)MgBr (R = H, Me) in THF.

Scheme 1

As the temperature increased, reversible changes in the ¹H NMR spectra of cations **1b** and **1d** typical of degenerate rearrangements of the carbocations of such a type by 1,2-vinyl shifts were observed. The alternative mechanisms of similar degenerate

$$\begin{array}{c|c}
H & R^1 & H \\
OH & H^+ \\
\hline
-H_2O & H^-
\end{array}$$

$$\begin{array}{c}
H & A^1 \\
\hline
-H_2O & A^2 \\
\end{array}$$

$$\begin{array}{c}
A & A \\
\end{array}$$

$$\begin{array}{c}$$

 ‡ For **1b** (–107 °C): 1 H NMR, δ : 8.87–8.52 (m, 4H), 8.05–7.64 (m, 4H), 5.89 (s, 1H), 5.77 (s, 1H), 3.42 (s, 3H), 1.77 (s, 3H), 1.22 (s, 3H). 13 C NMR, δ : 231.6 (s), 149.4 (s), 147.8 (s), 142.4 (s), 133.7 (s), 127.2 (s), 154.4 (d), 137.5 (d), 134.6 (d), 131.1 (d), 129.5 (d), 128.1 (d), 127.3 (d), 126.1 (d), 118.2 (t), 63.9 (s), 28.5 (q), 24.6 (q), 21.0 (q).

Scheme 2

For **1d** (–114 °C). ¹H NMR, δ : 9.0–8.4 (m, 4H), 8.2–7.7 (m, 4H), 5.70 (q, 1H, J 6 Hz), 3.40 (s, 3H), 2.50 (s, 3H), 1.72 (s, 3H), 0.57 (d, 3H, J 6 Hz). ¹³C NMR, δ : 233.4 (s), 151.9 (s), 147.0 (s), 134.3 (s), 131.9 (s), 126.1 (s), 152.5 (d), 136.8 (d), 134.2 (d), 131.0 (d), 129.1 (d), 128.3 (d), 127.6 (d), 127.1 (d), 125.9 (d), 62.4 (s), 31.4 (q), 25.7 (q), 24.1 (q), 14.4 (q) (Bruker AM-400 spectrometer; CD₂Cl₂ as an internal standard, δ 5.33 for ¹H and 53.6 for ¹³C).

Table 1 Rates of 1,2-shifts of vinyl groups in cations 1a-d.

Ion	k^a/s^{-1}	T/°C	$\Delta G^{\#}/\mathrm{kJ}\;\mathrm{mol}^{-1}$	<i>k</i> ^b /s ^{−1}
1a ²	1.1×10 ⁵	-103	24	1×10 ⁵
1b	12±2	-102 ± 2	37.5±0.5	10±4
1c1	1.0×10^{5}	-120	22	6×10^{5}
1d	40±10	-88 ± 2	38.9±0.6	4±2

^aExperimental values. ^bAt –103 °C, calculated from the Eyring equation.

rearrangements were thoroughly analysed and firmly rejected previously.^{1,2} The rates of the degenerate rearrangements of cations **1b** and **1d** by 1,2-shift of vinyl groups (Table 1) were determined by dynamic 1H NMR. Comparison of these data with those obtained earlier for cations **1a**² and **1c**¹ shows unexpected very strong retardation of 1,2-shifts of 1-methyl-1-vinyl and *trans*-1-methyl-1-propenyl groups. For example, in passing from cation **1c** having *cis*-1-methyl-1-propenyl group to **1d** having *trans*-1-methyl-1-propenyl group, the rate of rearrangement decreased by a factor of 10⁵. Note that the rate of migration of the *trans*-1-methyl-1-propenyl group is close to that of the 1-methyl-1-vinyl group in spite of the presence of a methyl group in the β -position of the former.

The reasons of the retarding effects observed are yet unknown. Now we try to solve this problem by quantum chemistry calculations.

References

- (a) V. A. Bushmelev, A. M. Genaev and V. G. Shubin, Zh. Org. Khim., 2004, 40, 1007 (Russ. J. Org. Chem., 2004, 40, 966); (b) V. A. Bushmelev, A. M. Genaev and V. G. Shubin, Izv. Akad. Nauk, Ser. Khim., 2004, 2767 (Russ. Chem. Bull., Int. Ed., 2004, 53, 2886).
- 2 V. A. Bushmelev, A. M. Genaev and V. G. Shubin, Zh. Org. Khim., 2006, 42, 107 (in Russian).
- 3 G. I. Borodkin and V. G. Shubin, Chemistry Rev., 1999, 24, Part 2, 1.
- 4 J. N. Marx and Y. S. P. Hahn, J. Org. Chem., 1988, 53, 2866.
- 5 T. Zincke and W. Tropp, Liebigs Ann. Chem., 1908, 362, 242.

Received: 30th June 2005; Com. 05/2540